Energy-and-perception-aware planning and navigation framework for unmanned aerial vehicles

Author:

Takemura Reiya1ORCID,Aoki Nobuaki1,Ishigami Genya1

Affiliation:

1. Graduate School of Integrated Design Engineering, Keio University, Yokohama, Japan

Abstract

This paper presents an energy and perception aware framework for path planning and navigation of unmanned aerial vehicles (UAVs) in GNSS-denied and spatiotemporal wind environments. The proposed framework mainly consists of the global and local path planning methods that respectively consider the energy consumption of an UAV and perception quality of a light detection and ranging (LiDAR) sensor mounted on the UAV. The energy consumption is estimated based on the aerodynamic model that calculates drag and lift forces on the UAV. The global planner then uses the total energy consumption in the spatiotemporal wind as the cost function to find an energy-efficient path as a set of waypoints. The local path planning navigates the UAV between the waypoints with maintaining the perception quality. The perception quality is quantified based on how well the LiDAR sensor scans feature points around the UAV that highly correlates with the navigation accuracy. Numerical simulation study for each of the global and local path planners validates their usefulness. Further, the overall framework is entirely verified in a long-range flight scenario of the photorealistic environments developed in the Gazebo simulation.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3