Research on multi-objective flow shop scheduling optimization in supply chain environment based on Fuzzy Relevance Entropy Method

Author:

Luo Zhe1,Tan Yonghong1,Zhu Guangyu2,Xia Yuping1,Wang Xinyu1

Affiliation:

1. College of Intelligent Manufacturing, Hunan University of Science and Engineering, Yongzhou, P. R. China

2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, P. R. China

Abstract

For the multi-objective flow shop scheduling problem in the supply chain environment, this paper proposes the Fuzzy Relevance Entropy method (FREM) to solve the adaptive value assignment problem in the multi-objective optimization process of the supply chain environment by combining Fuzzy Information Entropy Theory (FIET) and Degree of Membership Function (DMF). Firstly, the uncertainty of each sub-objective of the ideal solution and Pareto solution of the objective is extracted using the Degree of Membership Function. Secondly, each solution is mapped into an affiliation degree fuzzy set and the information contained in the fuzzy set is reprocessed using Fuzzy Information Entropy Theory. Finally, the amount of information contained in the ideal solution solved by the Pareto method is used to guide the evolution of the Particle Swarm Optimization (PSO) algorithm, thus avoiding the traditional multi-objective optimization process of assigning weights to solve the fitness link. This paper combines both the Fuzzy Relevance Entropy method and the Stochastic Weight method with Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms to address the five-objective flow shop scheduling problem in the supply chain environment. Experimental results demonstrate that the proposed Fuzzy Relevance Entropy method effectively solves the multi-objective flow shop scheduling problem in the supply chain environment and achieves better optimization results compared to the Stochastic Weight method.

Funder

Subject of Hunan Provincial Social Science Achievement Review Committee

Hunan Provincial Natural Science Foundation Project

natural science foundation of fujian province

Scientific Research Project of Hunan Provincial Education Department

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3