Wear mechanisms of diamond segmenta in cutting of carbon fiber reinforced cement-based composite and optimizing in parameters

Author:

Wang Wenhua123,Zhang Heng1234ORCID,Zhang Jinsheng123ORCID,Wu Jian4,Li Longcai4

Affiliation:

1. Shenzhen Research Institute of Shandong University, Shenzhen, China

2. Rizhao Research Institute of Shandong University, Rizhao, China

3. Key Laboratory of High-Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan, China

4. Hubei Province Huajian Stone Co.,Ltd, Macheng, China

Abstract

Carbon fiber reinforced cement-based composite material (CFRC) is a novel type of composite material that involves the incorporation of carbon fibers into ordinary concrete. This addition effectively enhances the tensile strength, deformation performance, and dynamic load resistance of reinforced concrete structures. Consequently, CFRC has found increasing applications in the construction industry. The objective of this research is to investigate the wear mechanisms of diamond tools during the sawing process of CFRC and offer guidance on cost reduction through the optimization of processing parameters. The wear analysis of diamond segments can be divided into two categories: matrix wear and diamond particle wear. The diamond particles can exist in different states, and the formation of voids resulting from the detachment of diamond particles is considered as a reference point. The analysis reveals that abrasive wear is the main mechanisms of matrix wear in CFRC sawing. The wear resistance is strongly influenced by the proportion of diamond particles in favorable states, which is determined by the applied loads and operating parameters. The proportion of diamond particles exhibits a clear variation with adjustments made to the feeding speed. Notably, an increase in feeding rate results in a significant decrease in the percentage of blunt particles, reducing it from 28% to 6%. To achieve a lower wear rate, a predictive model was established using Design Expert software based on the experimental results. The model demonstrated that a wear rate as low as 268.5 mm/m2 can be achieved with a flywheel speed of 78 r/min and a feeding speed of 90 mm/h. The optimization process, aimed at minimizing wear rate, was successfully carried out without compromising productivity.

Funder

the Basic and Applied Basic Research Foundation of Guangdong province

the Key Research and Development Project of Rizhao

the Hubei Provincial Science and Technology Innovation Program

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3