Multi-objective optimization of Nd:Yag laser machining’s conflicting responses while milling micro-channels

Author:

Abidi Mustufa Haider1ORCID,Mohammed Muneer Khan1,Aboudaif Mohamed K1,Alkhalefah Hisham1

Affiliation:

1. Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia

Abstract

Laser processing of materials finds application in micro-nano devices mainly because of its accuracy, flexibility, and ability to machine almost any material. Although it offers numerous advantages, it is a complex process involving a large number of factors. The quality of machining often depends on the appropriate selection of parameters. Moreover, the output responses in machining processes have conflicting nature; some are to be minimized, and others have to be maximized. This work uses grey relationship analysis coupled with principal component analysis for multi-response optimization of conflicting responses during laser machining of micro-channels. Micro-channels with a cross-sectional size of 200 × 100 µm were created using Nd:YAG laser beam micro-milling in steel alloy (AISI 1045). The scan speed, layer thickness, and scan strategy were found to have a significant effect on the dimensional accuracy of the microchannel. At the same time, the material removal rate was mostly influenced by layer thickness. Multi-response optimization results suggest low pulse frequency, high scan speed, low layer thickness, and S3 scan strategy for accurately fabricating micro-channels.

Funder

King Saud University

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3