Effect of Carbon Dioxide-Enriched Water and Fresh Water on the Cutaneous Microcirculation and Oxygen Tension in the Skin of the Foot

Author:

Hartmann Bernd R.,Bassenge Eberhard,Pittler Max,Hartmann Bernd R.1

Affiliation:

1. Institute of Applied Physiology University of Freiburg Hellmann Allee 13 a D-79189 Bad Krozingen, Germany

Abstract

The effects of immersion of the lower leg and foot in fresh water and in carbon dioxide (CO2 )-enriched water (1200 mg CO2 per kg water; succinate + sodium bicarbonate: Actibath®, KAO Tokyo) on cutaneous circulation, vasomotion and oxygen tension (PO2) were measured by laser Doppler flowmetry and transcutaneous oximetry. On the first of two consecutive days patients were randomly assigned to have the lower extremities immersed in either fresh water or CO2-enriched water under standardized conditions (temperature, 34°C; depth, 35 cm; immersion time, twenty minutes) with concurrent measurement. On the second day patients were switched to the other bath type. For both sets of measurements probes were attached symmetrically to the dorsum of each foot. Included in the study were 18 patients with mild, bilateral, peripheral, occlusive arterial disease (intermittent claudication, femoral or iliac type). During immersion in CO2 enriched water the Doppler laser signal and vasomotion amplitude rose by 300%, while PO2 increased by 10%. These increases were still apparent during the latter part of the measurement period, following withdrawal of the limbs from the bath, while patients were seated and supine. During immersion in fresh water and thereafter the Doppler laser signal was unchanged and the PO2 increase was considerably less marked. The authors were thus able to demonstrate vasodilation and increased oxygen utilization (Bohr effect) resulting from topical CO2 application, and hence, that the use of topical CO2 has an objective basis.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3