SDC1 knockdown induces epithelial–mesenchymal transition and invasion of gallbladder cancer cells via the ERK/Snail pathway

Author:

Liu Zixiang1,Jin Hao2,Yang Song3,Cao Haiming2,Zhang Ziyan1,Wen Bo1,Zhou Shaobo1

Affiliation:

1. The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China

2. Zhuhai People’s Hospital, Zhuhai, Guangdong, China

3. The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China

Abstract

Background Expression levels of the cell adhesion molecule syndecan-1 (SDC1) have been shown to be inversely proportional to tumor differentiation and prognosis. However, its role in the development of gallbladder cancer (GBC) remains unclear. Methods We knocked down SDC1 in GBC cells by RNA interference and determined its roles in cell proliferation, apoptosis, invasion, and migration by Cell Counting Kit-8, colony-formation, flow cytometry, Hoechst 33342 staining, transwell invasion, and scratch wound assays. Expression levels of epithelial–mesenchymal transition (EMT)-related and extracellular signal-regulated kinase (ERK)/Snail pathway proteins were determined by western blotting and immunofluorescence. Results Cell proliferation, invasion, and migration were all increased in GBC cells with SDC1 knockdown, compared with cells in the blank control and negative control groups, but apoptosis was similar in all three groups. E-cadherin and β-catenin expression levels were significantly lower and N-cadherin, vimentin, p-ERK1/2, and Snail expression were significantly higher in the SDC1 knockdown group compared with both controls, while ERK1/2 levels were similar in all groups. Reduced E-cadherin and increased vimentin levels were confirmed by immunofluorescence. Conclusions SDC1 knockdown promotes the proliferation, invasion, and migration of GBC cells, possibly by regulating ERK/Snail signaling and inducing EMT and cancer cell invasion.

Funder

the Natural Science Research Foundation of Anhui province, China

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3