MRI radiomics-based evaluation of tuberculous and brucella spondylitis

Author:

Wang Wenhui12,Fan Zhichang12,Zhen Junping2ORCID

Affiliation:

1. College of Medical Imaging, Shanxi Medical University, Taiyuan, China

2. Department of MR, the Second Hospital of Shanxi Medical University, Taiyuan, China

Abstract

Objectives We analyzed magnetic resonance imaging (MRI) and radiomics labels from tuberculous spondylitis (TBS) and brucella spondylitis (BS) to build machine learning models that differentiate TBS from BS and culture-positive TBS (TBS(+)) from culture-negative TBS (TBS(−). Methods This retrospective study included 56 patients with BS, 63 patients with TBS(+) and 71 patients with TBS(−). Radiomics labels were extracted from T2-weighted fat-suppression images. MRI labels were analyzed via logistic regression (LR); radiomics labels were analyzed by t-tests, SelectKBest, and least absolute shrinkage and selection operator (LASSO). Random forest (RF) and support vector machine (SVM) models were established using radiomics or joint (radiomics+MRI) labels. Models were evaluated by receiver operating characteristic curves, areas under the curve (AUCs), decision curve analysis (DCA), and Hosmer–Lemeshow tests. Results When joint-label models were used to compare BS vs TBS(+) and BS vs TBS(−) groups, SVM AUCs were 0.904 and 0.944, respectively, whereas RF AUCs were 0.950 and 0.947, respectively; these were higher than the AUCs of the MRI label-based LR model. DCA showed that radiomics-based machine learning models had a greater net benefit; Hosmer–Lemeshow tests demonstrated good prediction consistency for all models. Conclusions Radiomics can help distinguish TBS from BS and TBS(+) from TBS(−).

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biochemistry (medical),Cell Biology,Biochemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3