Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling

Author:

Groβ Roderich1,Dorigo Marco2

Affiliation:

1. ANT LAB, School of Biological Sciences, University of Bristol, UK, , IRIDIA, CoDE, Université Libre de Bruxelles, Belgium

2. IRIDIA, CoDE, Université Libre de Bruxelles, Belgium,

Abstract

Group transport is performed in many natural systems and has become a canonical task for studying cooperation in robotics. We simulate a system of simple, insect-like robots that can move autonomously and grasp objects as well as each other. We use artificial evolution to produce solitary transport and group transport behaviors. We show that robots, even though not aware of each other, can be effective in group transport. Group transport can even be performed by robots that behave as in solitary transport. Still, robots engaged in group transport can benefit from behaving differently from robots engaged in solitary transport. The best group transport behaviors yielded by half of the evolutions let robots organize into self-assembled structures. This provides evidence that self-assembly can provide adaptive value to individuals that compete in an artificial evolution based on task performance. We conclude the article by discussing potential implications for evolutionary biology and robotics.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3