Affiliation:
1. Institute for Theoretical Physics, Goethe University Frankfurt, Frankfurt, Germany
2. Department of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
Abstract
Which kind of complex behavior may arise from self-organizing principles? We investigate this question for the case of snake-like robots composed of passively coupled segments, with every segment containing two wheels actuated separately by a single neuron. The robot is self-organized both on the level of the individual wheels and with respect to inter-wheel coordination, which arises exclusively from the mechanical coupling of the individual wheels and segments. For the individual wheel, the generating principle proposed results in locomotive states that correspond to self-organized limit cycles of the sensorimotor loop. Our robot interacts with the environment by monitoring the state of its actuators, that is, via propriosensation. External sensors are absent. In a structured environment the robot shows complex emergent behavior that includes pushing movable blocks around, reversing direction when hitting a wall, and turning when climbing a slope. On flat grounds the robot wiggles in a snake-like manner, when moving at higher velocities. We also investigate the emergence of motor primitives, namely, the route to locomotion, which is characterized by a series of local and global bifurcations in terms of dynamical system theory.
Funder
German Science Foundation
Subject
Behavioral Neuroscience,Experimental and Cognitive Psychology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献