Preparation of an adipose-derived stem cell/fibrin–poly(d,l-lactic-co-glycolic acid) construct based on a rapid prototyping technique

Author:

Zhao Xinru12,Wang Xiaohong123

Affiliation:

1. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China

2. Business Innovation Technology (BIT) Research Centre, School of Science and Technology, Aalto University, P.O. Box 15500, 00076 Aalto, Finland

3. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China

Abstract

Currently, large, thick, and complex tissue vascularization is one of the research focuses of tissue engineering. Numerous studies have proven that microvascular systems can be developed by cultivating endothelial cells in a hydrogel/scaffold structure. As the sources of adult endothelial cells are very limited and very easily degraded, it is better to induce stem cells into endothelial cells. In this article, a grid poly(d,l-lactic- co-glycolic acid) structure with defined internal channels was fabricated using a low-temperature deposition manufacturing technique under computer direction. In a fibrinogen mixture, an aqueous adipose-derived stem cell fibrinogen mixture was incorporated into the internal walls of the poly(d,l-lactic- co-glycolic acid) scaffold and stabilized with thrombin solution. After several days of in vitro culture, the adipose-derived stem cells immobilized in the fibrin hydrogel were induced into endothelial-like cells with endothelial growth factor and basic fibroblast growth factor. Morphological and biological properties of the composite cell/fibrin–poly(d,l-lactic- co-glycolic acid) construct were characterized.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3