Synthesis, characterization, and antimicrobial properties of novel dual drug loaded electrospun mat for wound dressing applications

Author:

Andra Swetha1,Balu Satheesh kumar2,Ramamoorthy Rajalakshmi3,Muthalagu Murugesan3ORCID,Sampath Devisri3,Sivagnanam Karthika3,Arumugam Gobalakrishnan3

Affiliation:

1. Center for Nanoscience and Technology, Chennai Institute of Technology, Chennai, Tamil Nadu, India

2. Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

3. Department of Textile Technology, Anna University, Chennai, Tamil Nadu, India

Abstract

Wound healing properties of some herbs have been known for decades. Recently, electrospun mats have been used as a wound dressing material due to the high surface area of fiber and ease of incorporation of drug into the fiber matrix. In this aspect, the incorporation of herbal extracts in electrospun matrix could provide synergistic effect for wound healing. In the present work, extracts from Cissus quadrangularis (CQ) and Galinsoga parviflora Cav (GP) were loaded into the PVA solution in different proportions. These solutions were used to produce nanofibrous mat in electrospinning and the characteristics of the mat were analyzed. The morphology of the fiber was analyzed using scanning electron microscope (SEM), the presence of functional groups was identified using Fourier transform infrared spectroscopy (FTIR). The result of drug release shows that the GP extract loaded PVA nanofibrous mat has sustained drug release of 28% after 8 h of incubation compared to CQ loaded PVA nanofibrous mat. This trend follows as the concentration of GP increases in the mixture. The antimicrobial efficiency of the prepared mat was evaluated against both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus. The prepared nanofibrous mat has shown excellent antibacterial activity, cell viability, hemocompatibility, and sufficient tensile properties which indicates that it could be a promising biomaterial for wound dressing application.

Funder

University Grants Commission

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3