Exploring the Interaction Between Head-Supported Mass, Posture, and Visual Stress on Neck Muscle Activation

Author:

Le Peter1ORCID,Weisenbach Charles A.12,Mills Emily H. L.12,Monforton Lanie13,Kinney Micah J.1

Affiliation:

1. Naval Medical Research Unit Dayton, Ohio, USA

2. Oak Ridge Institute for Science and Education, Tennessee, USA

3. Parsons Corporation, Centerville, Virginia, USA

Abstract

Objective Assess neck muscle activity for varying interactions between helmet, posture, and visual stress in a simulated “helo-hunch” posture. Background Military aviators frequently report neck pain (NP). Risk factors for NP include head-supported mass, awkward postures, and mental workload. Interactions between these factors could induce constant low-level muscle activation during helicopter flight and better explain instances of NP. Method Interactions between physical loading (helmet doffed/donned), posture (symmetric/asymmetric), and visual stress (low/high contrast) were studied through neck muscle electromyography (EMG), head kinematics, subjective discomfort, perceived workload, and task performance. Subjects ( n = 16) performed eight 30-min test conditions (varied physical loading, posture, and visual stress) while performing a simple task in a simulated “helo-hunch” seating environment. Results Conditions with a helmet donned had fewer EMG median frequency cycles (which infer motor unit rotation for rest/recovery, where more cycles are better) in the left cervical extensor and left sternocleidomastoid. Asymmetric posture (to the right) resulted in higher normalized EMG activity in the right cervical extensor and left sternocleidomastoid and resulted in less lateral bending compared with neutral across all conditions. Conditions with high visual stress also resulted in fewer EMG cycles in the right cervical extensor. Conclusion A complex interaction exists between the physical load of the helmet, postural stress from awkward postures, and visual stress within a simulated “helo-hunch” seating environment. Application These results provide insight into how visual factors influence biomechanical loading. Such insights may assist future studies in designing short-term administrative controls and long-term engineering controls.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3