Predicting Procedure Step Performance From Operator and Text Features: A Critical First Step Toward Machine Learning-Driven Procedure Design

Author:

McDonald Anthony D.1ORCID,Ade Nilesh1ORCID,Peres S. Camille1ORCID

Affiliation:

1. Texas A&M University, USA

Abstract

Objective The goal of this study is to assess machine learning for predicting procedure performance from operator and procedure characteristics. Background Procedures are vital for the performance and safety of high-risk industries. Current procedure design guidelines are insufficient because they rely on subjective assessments and qualitative analyses that struggle to integrate and quantify the diversity of factors that influence procedure performance. Method We used data from a 25-participant study with four procedures, conducted on a high-fidelity oil extraction simulation to develop logistic regression (LR), random forest (RF), and decision tree (DT) algorithms that predict procedure step performance from operator, step, readability, and natural language processing-based features. Features were filtered using the Boruta approach. The algorithms were trained and optimized with a repeated 10-fold cross-validation. After training, inference was performed using variable importance and partial dependence plots. Results The RF, DT, and LR algorithms with all features had an area under the receiver operating characteristic curve (AUC) of 0.78, 0.77, and 0.75, respectively, and significantly outperformed the LR with only operator features (LROP), with an AUC of 0.61. The most important features were experience, familiarity, total words, and character-based metrics. The partial dependence plots showed that steps with fewer words, abbreviations, and characters were correlated with correct step performance. Conclusion Machine learning algorithms are a promising approach for predicting step-level procedure performance, with acknowledged limitations on interpolating to nonobserved data, and may help guide procedure design after validation with additional data on further tasks. Application After validation, the inferences from these models can be used to generate procedure design alternatives.

Funder

Next Generation Advanced Procedures Initiative

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Reference78 articles.

1. Development of a procedure writers’ guide framework: Integrating the procedure life cycle and reflecting on current industry practices

2. Acquisition of cognitive skill.

3. Bates S., Holroyd J. (2012). Human factors that lead to non-compliance with standard operating procedures (Research Report RR 919). Health and Safety Executive Laboratory.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying step-level complexity in procedures: Integration of natural language processing into the Complexity Index for Procedures—Step level (CIPS);International Journal of Industrial Ergonomics;2021-09

2. Text Comprehension;Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications;2019-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3