In vivo MRI detection of intraplaque macrophages with biocompatible silica-coated iron oxide nanoparticles in murine atherosclerosis

Author:

Kim Chan Woo12ORCID,Hwang Byung-Hee12ORCID,Moon Hyeyoung3,Kang Jongeun34,Park Eun-Hye12,Ihm Sang-Hyun15,Chang Kiyuk12,Hong Kwan Soo34

Affiliation:

1. Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

2. Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

3. Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea

4. Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea

5. Division of Cardiology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea

Abstract

Identification of a vulnerable atherosclerotic plaque before rupture is an unmet clinical need. Integrating nanomedicine with multimodal imaging has the potential to precisely detect biological processes in atherosclerosis. We synthesized silica-coated iron oxide nanoparticles (SIONs) coated with rhodamine B isothiocyanate and polyethylene glycol and investigated their feasibility in the detection of macrophages in inflamed atherosclerotic plaques of apolipoprotein E-deficient (ApoE−/−) mice via magnetic resonance (MR) and fluorescence reflectance (FR) imaging. In vitro cellular uptake of SIONs was assessed in macrophages using confocal laser scanning microscopy (CLSM). In vivo MR imaging was performed 24 h after SION injection via the tail vein in 26-week-old ApoE−/− mice fed a high-cholesterol diet (HCD). We also performed FR imaging of the extracted aortas from four different mice: two normal-diet-fed C57BL/6 mice injected with saline or 10 mg/kg SIONs and two HCD-fed ApoE−/− mice injected with 5 or 10 mg/kg SIONs. The harvested aortas were cryosectioned and stained with immunohistochemical staining. The CLSM images at 24 h after incubation showed efficient uptake of SIONs by macrophages, with no evidence of cytotoxicity. The in vivo and ex vivo MR and FR images demonstrated SION deposition in the atheroma. Upon immunohistochemical staining of the aorta, CLSM images revealed colocalization of macrophages and SIONs in the atherosclerotic plaque. These results demonstrate that polyethylene glycosylated SIONs could be a highly effective method to identify macrophage activity in atherosclerotic plaques as a multimodal imaging agent.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3