Assessing acoustic performance of building material: A finite element model for 3D printed multilayer micro-perforated panels with compressed earth blocks

Author:

Bainamndi Joseph Daliwa1ORCID,Siryabe Emmanuel2,Ntamack Guy-Edgar1,Yamigno Serge Doka1,Maréchal Pierre3

Affiliation:

1. Département de Physique, Faculté des Sciences, Université de Ngaoundéré, Cameroun

2. Safran Helicopter Engines, Groupe Evaluation Non Destructive, Avenue Joseph Szydlowski, Bordes, France

3. Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, Université Le Havre Normandie, Le Havre, France

Abstract

This study deals with 3D printing multilayered micro-perforated panels (M-MPPs) coupled with buildings materials as compressed earth block for noise reduction applications. The sound absorption coefficient α is utilized as a metric to assess the sound insulation capabilities across a frequency range spanning from 10 to 3000 Hz, then evaluated and validated by numerical and experimental methods. The FEM model developed makes it possible to predict the acoustic absorption of M-MPPs by tuning the frequency range and varying optimized acoustics parameters, considering hole-hole interaction and taking into account visco-thermal effects that are present in compressed earth blocks. It is shown that the shape of perforations and material properties including the porosity rate, arrangement in the design of multilayer micro-perforated structures are identified to play a significant role in the sound performance of the entire structure. In addition, the application of MPP coupled with compressed earth blocks improve the sound absorption capacity of the composite structure. The developed FEM leads to accurate prediction of performance, efficient optimization, and cost effectiveness. Finally, the present study reveals the importance of M-MPPs combined with compressed earth blocks (CEBs) as viable noise reduction materials, particularly relevant for engineering applications and development initiatives in emerging economies.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3