Effects of low-frequency noise on human cognitive performances in laboratory

Author:

Rossi Laura1,Prato Andrea1,Lesina Lorenzo1,Schiavi Alessandro1

Affiliation:

1. INRiM—National Institute of Metrological Research, Torino, Italy

Abstract

Indoor working and living environments are increasingly exposed to low-frequency noise sources. The well-known relationship between noise conditions and effects on human health requires the development of a proper procedure to evaluate the stress due to acoustical factors. For this purpose, an experiment, based on Soft Metrology principles, was designed to measure the changes of cognitive and physiological parameters (response time and heart rate) on a sample of 25 male and female volunteers, aged 19–29 years, exposed to three types of noise in a hemi-anechoic room. Participants were involved in a cognitive task (Stroop effect) for 10 min in four different conditions: silence, stochastic broadband multi-tonal noise (BBN), stochastic low-frequency multi-tonal noise (LFN1), and low-frequency stationary noise with regular amplitude modulation (LFN2). All sounds were reproduced by two loudspeakers at equivalent sound pressure level of 93 dB. Results showed that in noise conditions, subjects reduced their response times. This is an evidence of growing stress, according to arousal theory. In particular, LFN1 and LFN2 produced cognitive stress comparable to stochastic broadband multi-tonal noise. Furthermore, subdividing the subjects in extroverts and introverts through the Eysenck Personality Questionnaire–Revised psychological test, it was shown that LFN1 and LFN2 produced higher stress effects than stochastic broadband multi-tonal noise on the cognitive performances and a physiological stress comparable to stochastic broadband multi-tonal noise in introverts, whereas no effects were observed in extroverts, as hypothesized by Eysenck. This result highlights the necessity in the future to consider the personality parameter as a key factor in the evaluation of the effects of noise on humans.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Acoustics and Ultrasonics,Building and Construction

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3