Sequential Bayesian Ability Estimation Applied to Mixed-Format Item Tests

Author:

Xiong Jiawei1ORCID,Cohen Allan S.2ORCID,Xiong Xinhui (Maggie)3

Affiliation:

1. Pearson, Athens, GA, USA

2. The University of Georgia, Athens, GA, USA

3. Educational Testing Service, Princeton, NJ, USA

Abstract

Large-scale tests often contain mixed-format items, such as when multiple-choice (MC) items and constructed-response (CR) items are both contained in the same test. Although previous research has analyzed both types of items simultaneously, this may not always provide the best estimate of ability. In this paper, a two-step sequential Bayesian (SB) analytic method under the concept of empirical Bayes is explored for mixed item response models. This method integrates ability estimates from different item formats. Unlike the empirical Bayes method, the SB method estimates examinees’ posterior ability parameters with individual-level sample-dependent prior distributions estimated from the MC items. Simulations were used to evaluate the accuracy of recovery of ability and item parameters over four factors: the type of the ability distribution, sample size, test length (number of items for each item type), and person/item parameter estimation method. The SB method was compared with a traditional concurrent Bayesian (CB) calibration method, EAPsum, that uses scaled scores for summed scores to estimate parameters from the MC and CR items simultaneously in one estimation step. From the simulation results, the SB method showed more accurate and reliable ability estimation than the CB method, especially when the sample size was small (150 and 500). Both methods presented similar recovery results for MC item parameters, but the CB method yielded a bit better recovery of the CR item parameters. The empirical example suggested that posterior ability estimated by the proposed SB method had higher reliability than the CB method.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3