Improving Tourist Arrival Prediction: A Big Data and Artificial Neural Network Approach
Author:
Affiliation:
1. Department of Business Informatics, Institute of Digital Transformation Ravensburg, Weingarten University, Weingarten, Germany
2. Department of Business Economics, Law, Geography and Tourism, ETOUR Mid-Sweden University, Östersund, Sweden
Abstract
Funder
European Regional Development Fund
Publisher
SAGE Publications
Subject
Tourism, Leisure and Hospitality Management,Transportation,Geography, Planning and Development
Link
http://journals.sagepub.com/doi/pdf/10.1177/0047287520921244
Reference140 articles.
1. Foreign arrivals nowcasting in Italy with Google Trends data
2. Can internet searches forecast tourism inflows?
3. Comparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecasting
4. Modeling and Forecasting Regional Tourism Demand Using the Bayesian Global Vector Autoregressive (BGVAR) Model
Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Navigating the AI horizon in hospitality: a novel classification and future research agenda;International Hospitality Review;2024-08-01
2. Smart tourism practice in the scope of sustainable tourism in emerging markets: a systematic literature review;Cogent Social Sciences;2024-07-30
3. New Changes in Chinese Urban Tourism Pattern under the Impact of COVID-19 Pandemic: Based on Internet Attention;Sustainability;2024-07-09
4. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04
5. Forecasting tourism demand with search engine data: A hybrid CNN-BiLSTM model based on Boruta feature selection;Information Processing & Management;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3