Fracture of Porcelain-veneered Structures in Fatigue

Author:

Kim B.1,Zhang Y.1,Pines M.1,Thompson V.P.1

Affiliation:

1. Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, USA

Abstract

Porcelain-veneered crowns are widely used in modern dentistry, and their fracture remains problematic, especially in all-ceramic systems. We hypothesized that substructure properties have a significant effect on the longevity of porcelain-veneered crowns. Flat porcelain/metal or porcelain/ceramic structures were cemented to dentin-like composite, and a mouth-motion cyclic load of 200 N was delivered by means of a tungsten carbide spherical indenter ( r = 3.18 mm), emulating occlusal loading on crowns supported by dentin. Findings indicated that porcelain on a low-hardness gold-infiltrated alloy was vulnerable to both occlusal surface contact damage and porcelain lower surface radial fracture, while porcelain on a higher-hardness palladium-silver alloy fractured chiefly from occlusal surface damage. The advantage of a high-modulus metal substructure was less pronounced. Fracture in the porcelain/zirconia system was limited to surface damage in the veneer layer, similar to that in the porcelain/palladium-silver system. Bulk fracture, observed in veneered alumina layers, was not found for zirconia.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3