Resource utilization prediction technique in cloud using knowledge based ensemble random forest with LSTM model

Author:

Valarmathi K1ORCID,Kanaga Suba Raja S1

Affiliation:

1. Easwari Engineering College, Chennai, TN, India

Abstract

Future computation of cloud datacenter resource usage is a provoking task due to dynamic and Business Critic workloads. Accurate prediction of cloud resource utilization through historical observation facilitates, effectively aligning the task with resources, estimating the capacity of a cloud server, applying intensive auto-scaling and controlling resource usage. As imprecise prediction of resources leads to either low or high provisioning of resources in the cloud. This paper focuses on solving this problem in a more proactive way. Most of the existing prediction models are based on a mono pattern of workload which is not suitable for handling peculiar workloads. The researchers address this problem by making use of a contemporary model to dynamically analyze the CPU utilization, so as to precisely estimate data center CPU utilization. The proposed design makes use of an Ensemble Random Forest-Long Short Term Memory based deep architectural models for resource estimation. This design preprocesses and trains data based on historical observation. The approach is analyzed by using a real cloud data set. The empirical interpretation depicts that the proposed design outperforms the previous approaches as it bears 30%–60% enhanced accuracy in resource utilization.

Publisher

SAGE Publications

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Reference27 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance analysis of machine learning algorithms for breast cancer prediction;WOMEN IN PHYSICS: 7th IUPAP International Conference on Women in Physics;2024

2. Prediction Based Load Balancing in Cloud Computing Using Conservative Q-Learning Algorithm;Communications in Computer and Information Science;2023-12-03

3. LSTM combined with BIM technology in the management of small and medium-sized span highway concrete beam bridges;Results in Engineering;2023-12

4. A Multilevel Learning Model for Predicting CPU Utilization in Cloud Data Centers;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

5. Prediction-based scheduling techniques for cloud data center’s workload: a systematic review;Cluster Computing;2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3