Effects of Evaporative Cooling Air Conditioning on Classroom Pollutants and Thermal Environment

Author:

Xiao Lu1,Du Zhenyu1

Affiliation:

1. Taiyuan University of Technology, Taiyuan, Shanxi, China

Abstract

Indoor particles and carbon dioxide concentration are major indices to evaluate indoor air quality. Based on the two-dimensional filler sieving model of the direct evaporative cooling segment, the porous media model was used for the simulation of the water filler section, the filtering efficiency of particle was simulated by adjusting the water drenching density and airflow velocity in different operating conditions. The three-dimensional classroom model used to change the exhaust outlet position and control the use of air conditioners simulated the indoor thermal environment and the changes in pollutant concentration. The Euler method and Lagrangian method were used to analyze the indoor flow field and particle sieving in the direct evaporation section, respectively. Conclusions show that in the application of evaporative cooling and stratum ventilation air conditioning system in classroom, the position of the exhaust port affects the concentration of carbon dioxide in the student’s breathing area. The water filler section can effectively reduce the concentration of particle and carbon dioxide supplied indoors. The filtration efficiency of particle in outdoor air passing through the direct evaporative cooling section based on diffusion, inertial collision, and interception is affected by the combined effect of particle size, onward wind speed, and water spray density. The filtration efficiency of particle increases as the density of the spray water increases. With the increase of head-on wind speed, the filtration efficiency of coarse particulate matter is higher than that of fine particulate matter. The research results help policy makers decide whether to install evaporative cooling air conditioning in schools and determine which exhaust outlet positions are most effective in improving indoor air quality.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3