Experiment analysis on defects in ultrasonic-assisted drilling of carbon fiber reinforced plastic with different diameter drills

Author:

Hu Chen123ORCID,Han Sheng1,Chen Meiling1,Zhu Yongwei1

Affiliation:

1. College of Mechanical Engineering, Yangzhou University, Yangzhou, China

2. College of Transportation Engineering, Yangzhou Polytechnic Institute, Yangzhou, China

3. JITRI Institute of Precision Manufacturing, Nanjing, China

Abstract

Carbon fiber reinforced polymers (CFRP) are increasingly used in aerospace, military, and automotive applications due to their high specific strength and corrosion resistance. CFRP components usually require small-hole machining before assembly. CFRP parts are susceptible to defects such as tears and uncut fibers during hole machining. Ultrasonic-assisted drilling (UAD) contributes to the suppression of their defects. However, preliminary experiments revealed that the effect at different diameters is not the same. Therefore, this paper innovatively compares the effect of ultrasonic-assisted machining on the suppression of defects under different hole diameters and investigates the mechanism. The effects of machining parameters such as ultrasonic power, feed rate, and rotational speed on burr and tear defects of holes under different hole diameters are experimentally studied and theoretically analyzed. It was shown that the lowest defective machined holes were obtained at 50% (4 μm) ultrasonic power for all hole diameters, while higher ultrasonic power would result in an increase in machining defects. Compared with small hole diameters, there are relatively fewer uncut fibers at large hole diameters, but the tearing defects are more severe. The defect suppression effect of ultrasound is more pronounced at larger holes. The change in cutting force due to ultrasound is an important reason for the difference in machining defects. At a diameter of 6 mm, the longitudinal cutting force decreased by 58.7%, while uncut fibers and tearing defects decreased by 45.1% and 12.6%, respectively. This study can provide a theoretical basis for the selection of ultrasonic power and other parameters when machining holes of different diameters.

Funder

Jiangsu Province Postgraduate Highlights Study Plan Projectof of JITRI Institute

National Natural Science Foundation of China

2023 Basic Science (Natural Science) research project of universities in Jiangsu Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3