A study on an incompressible polymeric pressurized vessel subjected to bulk degradation

Author:

Kazemian M1ORCID,Moazemi Goudarzi A1,Hassani A1ORCID

Affiliation:

1. Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

To study the mechanical behavior of an incompressible polymeric degradable vessel subjected to the neo-Hookean constitutive model, two solution frameworks are introduced. One is combining a recently developed semi-analytical method and the [Formula: see text]-family time approximation (hybrid method). The other is the Standard Galerkin Finite Element Method (SGFEM), which is implemented by providing a script in the FlexPDE commercial software. A deformation-induced evolution law is used to study the dependence of material properties upon time and position in the polymeric vessel during bulk degradation. The convergence of the two proposed methods on degradable vessel responses under the axisymmetric plane-strain conditions is seen. Although the hybrid method, unlike the SGFEM, is implemented as an iteration-based algorithm, it uses highly acceptable central processing unit time because it can directly solve differential equations without converting variables. The FlexPDE method is much easier to extend to more complex case studies because the hybrid method is based on an analytical approach. It is found that less pressure is required to maintain the incompressibility of the material during the degradation. The material response to incompressibility decreases more sharply in the inner radius of the vessel. Initially, the hoop stress decreases in the inner radius but eventually reaches more than its virgin value.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3