Critical velocities and displacements of anisotropic tubes under a moving pressure

Author:

Gao Xin-Lin1ORCID,Littlefield Andrew G2

Affiliation:

1. Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA

2. US Army DEVCOM AC WSEC Benét Laboratories, Watervliet, NY, USA

Abstract

Critical velocities and middle-surface displacements of anisotropic axisymmetric cylindrical shells (tubes) under a uniform internal pressure moving at a constant velocity are derived in closed-form expressions by using the Love–Kirchhoff thin shell theory incorporating the rotary inertia and material anisotropy. The formulation is based on the general three-dimensional constitutive relations for orthotropic elastic materials and provides a unified treatment of orthotropic, transversely isotropic, cubic and isotropic tubes, which can represent various composite and metallic tubes. Closed-form formulas are first obtained for the general case with both the rotary inertia and radial stress effects, which are then reduced to the special cases without the rotary inertia effect and/or radial stress effect. It is shown that when the rotary inertia effect is suppressed and the radial normal stress is neglected, the newly derived formulas for the critical velocities of orthotropic and isotropic tubes recover the two existing ones for thin tubes as special cases. An example for an isotropic tube is provided to illustrate the new formulas, which give the values of the critical velocity and dynamic amplification factor that agree well with those obtained experimentally and computationally by others.

Funder

U.S. Army Combat Capabilities Development Command Armaments Center

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3