Asymptotic behavior of the solution of an axisymmetric problem of elasticity theory for a sphere with variable elasticity modules

Author:

Akhmedov Natiq K1ORCID,Gasanova Natavan S2

Affiliation:

1. Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan

2. Ganja State University, Ganja, Azerbaijan

Abstract

In the paper the axisymmetric problem of elasticity theory is studied for the radially inhomogeneous sphere of small thickness that does not contain any of the poles 0 and [Formula: see text]. Here the case is considered when the elasticity modules vary linearly with respect to the radius. It is assumed that the lateral surface of the sphere is free of stresses, and at the ends of the sphere (at the conical sections) the stresses are set, leaving it in equilibrium. A characteristic equation is obtained and, based on its asymptotic analysis, the existence of three groups of roots is established with respect to the small parameter characterizing the thickness of the sphere. The corresponding homogeneous solutions are constructed, depending on the roots of the characteristic equation. It is shown that the penetrating solution corresponds to the first group of roots. The second group of roots corresponds to the solution of the edge effect type, similar to the edge effect in the applied theory of shells. The third group of roots corresponds to the boundary layer type solution localized in the conical sections. The solution corresponding to the first and second groups of roots determines the internal stress–strain state of the sphere. In the first term of the asymptotic, they can be considered as a solution in the applied theory of shells. The question of satisfying the boundary conditions at the ends (on the conical sections) of the sphere is considered using the variational Lagrange principle.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3