Critical velocities of a three-layer composite tube incorporating the rotary inertia and material anisotropy

Author:

Gao Xin-Lin1ORCID

Affiliation:

1. Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA

Abstract

Critical velocities of a three-layer composite tube subjected to a uniform internal pressure moving at a constant velocity are obtained in closed-form expressions. A Love–Kirchhoff thin shell model including the rotary inertia and material anisotropy effects is used in the formulation. The composite tube is made of three perfectly bonded cylindrical layers of dissimilar materials, each of which can be orthotropic, transversely isotropic, cubic or isotropic. Closed-form formulas for the critical velocities are first derived for the general case by incorporating the effects of material anisotropy, rotary inertia and radial stress. Specific formulas are then obtained for composite tubes without the rotary inertia effect and/or the radial stress effect and with various types of material symmetry for each layer as special cases. It is also shown that the current model for three-layer tubes can be reduced to those for single- and two-layer tubes. To illustrate the newly derived formulas, an example is provided for a composite tube consisting of an isotropic inner layer, an orthotropic core, and an isotropic outer layer. All four critical velocities of the composite tube are computed using the new closed-form formulas. Three values of the lowest critical velocity of the three-layer composite tube are analytically obtained from three sets of the new formulas, which agree well with the value computationally determined by others.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3