A new model for spatial rods incorporating surface energy effects

Author:

Zhang Gongye1ORCID,Gao Xin-Lin2ORCID,Guo Ziwen1

Affiliation:

1. Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, China

2. Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, TX, USA

Abstract

A new non-classical model for spatial rods incorporating surface energy effects is developed using a surface elasticity theory. A variational formulation based on the principle of minimum total potential energy is employed, which leads to the simultaneous determination of the equilibrium equations and complete boundary conditions. The newly developed spatial rod model contains three surface elasticity constants to account for surface energy effects. The new model recovers the classical elasticity-based Kirchhoff rod model as a special case when the surface energy effects are not considered. To illustrate the new spatial rod model, two sample problems are analytically solved by directly applying the general formulas derived. The first one is the buckling of an elastic rod of circular cross-section with fixed-pinned supports, and the other is the equilibrium analysis of a helical rod deformed from a straight rod. An analytical formula is derived for the critical buckling load required to perturb the axially compressed straight rod, and two closed-form expressions are obtained for the force and couple needed in deforming the helical rod. These formulas reduce to those based on classical elasticity when the surface energy effects are suppressed. For the buckling problem, it is found that the critical buckling load predicted by the current new model is always higher than that given by the classical elasticity-based model, and the difference between the two sets of predicted values is significantly large when the radius of the rod is sufficiently small but diminishes as the rod radius increases. For the helical rod problem, the numerical results reveal that the force and couple predicted by the current model are, respectively, significantly larger and smaller than those predicted by the classical model when the rod radius is very small, but the difference is diminishing with the increase of the rod radius.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3