Stick-slip and wear phenomena at the contact interface between an elastic beam and a rigid substrate

Author:

D’Annibale Francesco1,Casalotti Arnaldo1ORCID,Luongo Angelo1ORCID

Affiliation:

1. Department of Civil, Construction-Architectural and Environmental Engineering, University of L’Aquila, L’Aquila, Italy; International Center for Mathematics and Mechanics of Complex Systems, M&MoCS, University of L’Aquila, L’Aquila, Italy

Abstract

In this paper, the static behavior of an elastic beam resting on a rigid substrate is investigated. The structure lies on a rigid substrate and exchanges with it tangential forces, in correspondence with a finite number of contact points. These actions entail extension of the beam in the longitudinal direction together with a negligible bending, owing to the small eccentricity between the beam’s axis line and the rigid substrate. The beam obeys a linear elastic law, while, at the interface, different nonlinear constitutive models are considered to account for stick-slip phenomena due to friction, as well as wear due to abrasion. It is assumed that the contact points are a-priori known, thus entailing that the structural system can be treated as naturally discrete. The static problem is accordingly shown to be governed by a system of nonlinear ordinary differential equations in time, which rules, in incremental form, the equilibrium at the contact points in the longitudinal direction. A numerical solution for the equilibrium equations is carried out, under different imposed time histories of the longitudinal displacement assigned at the boundary. Numerical results are presented to compare and discuss the in-time evolution of the contact interactions between the beam and the substrate.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Reference46 articles.

1. Maugis D. Contact, adhesion and rupture of elastic solids (Springer Series in Solid-State Sciences, vol. 130). Berlin: Springer Science & Business Media, 2013.

2. Rabinowicz E. Friction and wear of materials. New York: J Wiley & Sons Inc. 1995.

3. Persson BNJ. Sliding friction: Physical principles and applications. Berlin: Springer-Verlag, 2010.

4. Contact Mechanics and Friction

5. Survey of possible wear mechanisms

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3