Debonding of an elastic layer with a cavity from a rigid substrate caused by rotation of a bonded rigid cylinder

Author:

Malits Pinchas1ORCID

Affiliation:

1. PERI, Physics and Engineering Research Institute, Ruppin Academic Center, Emek Hefer, Israel

Abstract

Debonding of an elastic layer with a circular cylindrical cavity [Formula: see text], [Formula: see text], from a rigid substrate under action of a rigid cylinder is the object of this study. The annular debonding zone [Formula: see text] is caused by rotation of a cylinder bonded to the cavity surface. The problem is reformulated as dual integral equations with Weber integral transforms kernels. A Volterra operator transforming a Weber transforms kernel into a Bessel function of the first kind and Hankel integral transforms allow us to reduce dual equations to a Fredholm integral equation of the second kind and then, by some transformation, to another Fredholm integral equation which is more suitable for approximate methods. As [Formula: see text] and [Formula: see text], a highly accurate analytic approximate solution of the problem is suggested. The asymptotic solution of the problem is obtained as the width of debonding zone is very small while the thickness is not small. When the thickness is small, the Fredholm integral equations are computationally inefficient. A new method based on an operator transforming a Bessel function of the first kind into the kernel of Mehler–Fock integral transforms enabled us to convert one of the above-mentioned Fredholm equations into an equivalent Fredholm integral equation of the second kind that is effective for a small thickness. The asymptotic solution of the problem is obtained when both the layer thickness and the debonding zone width are small. Accurate mathematical methods, in particular investigations, and transformations of equations, developed in this study can be interesting to researchers employing dual integral equations technique in problems of mechanics and mathematical physics with mixed boundary conditions.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3