The linear elasticity tensor of incompressible materials

Author:

Federico Salvatore1,Grillo Alfio2,Imatani Shoji3

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, The University of Calgary, AB, Canada

2. DISMA “G L Lagrange”, Politecnico di Torino, Turin, Italy

3. Department of Energy Conversion Science, Kyoto University, Japan

Abstract

With a universally accepted abuse of terminology, materials having much larger stiffness for volumetric than for shear deformations are called incompressible. This work proposes two approaches for the evaluation of the correct form of the linear elasticity tensor of so-called incompressible materials, both stemming from non-linear theory. In the approach of strict incompressibility, one imposes the kinematical constraint of isochoric deformation. In the approach of quasi-incompressibility, which is often employed to enforce incompressibility in numerical applications such as the Finite Element Method, one instead assumes a decoupled form of the elastic potential (or strain energy), which is written as the sum of a function of the volumetric deformation only and a function of the distortional deformation only, and then imposes that the bulk modulus be much larger than all other moduli. The conditions which the elasticity tensor has to obey for both strict incompressibility and quasi-incompressibility have been derived, regardless of the material symmetry. The representation of the linear elasticity tensor for the quasi-incompressible case differs from that of the strictly incompressible case by one parameter, which can be conveniently chosen to be the bulk modulus. Some important symmetries have been studied in detail, showing that the linear elasticity tensors for the cases of isotropy, transverse isotropy and orthotropy are characterised by one, three and six independent parameters, respectively, for the case of strict incompressibility, and two, four and seven independent parameters, respectively, for the case of quasi-incompressibility, as opposed to the two, five and nine parameters, respectively, of the general compressible case.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3