How to Increase Profits Through Predictive Analytics When Only Few Competitors’ Bids Are Known

Author:

Herrmann Heinz1

Affiliation:

1. Australian Graduate School of Leadership, Torrens University Australia, Sydney, New South Wales, Australia.

Abstract

The clear majority of pre-existing work in the published domain of competitive bidding requires large sample sizes for reliable econometric, probabilistic or game-theoretic modelling techniques. Such unrealistic large data requirements have prevented the successful application of bid modelling in managerial practice. This article presents a new predictive analytics method for very small samples of historical bidding data. Requiring as few as nine competitive bid prices for a group of pooled/aggregated competitors over a 30-month period is the standout differentiator of this research from any previously published research. This minimizes the demands on competitive intelligence and, therefore, realistically enables its application in the real world of practice. Maximum likelihood estimations are used to evaluate two new, revolutionary bid strategies against a range of evaluation criteria, taking into account the pricing judgements made by competitors, including a degree of competitive reaction among them. Using off-the-shelf analytics software, a case study of a bidder from the telecommunications infrastructure sector demonstrates how commercial outcomes can be improved substantially: A 400 per cent improvement in win ratio, an 86 per cent increase in contribution margin and 76 per cent revenue growth. In addition, the difference between the submitted bids and the lowest-priced competing bids (which is an opportunity cost, sometimes referred to as the ‘spread’ or ‘money left on the table’), has been reduced to 2 per cent on a total revenue of US$210 million.

Publisher

SAGE Publications

Subject

Organizational Behavior and Human Resource Management,Strategy and Management,Business, Management and Accounting (miscellaneous),Business and International Management

Reference37 articles.

1. Technical Note—A Note on Cost Estimation and the Optimal Bidding Strategy

2. Beeston D. T. (1982). Estimating market variance. In Brandon P. S. (Ed.), Building cost techniques: New directions (pp. 265–277). London, UK: E. and F. N. Spon.

3. Closed competitive bidding

4. The effect of contract type and size on competitiveness in bidding

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3