LncRNA MIR210HG Facilitates Non-Small Cell Lung Cancer Progression Through Directly Regulation of miR-874/STAT3 Axis

Author:

Bu Liang1,Zhang Libin1,Tian Mei1,Zheng Zhoubin1,Tang Huijie2,Yang Qiuju2

Affiliation:

1. The First People’s Hospital of Yunnan Province, Medical School of Kunming University of Science and Technology, Kunming, China

2. Anesthesiology Department, No.1 People’s General Hospital of Yunnan Province, Kunming, Yunnan, China

Abstract

Background: Long noncoding RNAs are involved in the progression of multiple cancers. However, the expression and mechanism of microRNA (miR)210HG in non-small cell lung cancer (NSCLC) remain unclear. Methods: The levels of miR210HG and miR-874 were measured by quantitative real-time polymerase chain reaction in NSCLC tissue samples and cells. Non-small cell lung cancer cell proliferation, migration, and invasion were measured by Cell Counting Kit-8 and transwell assays. Luciferase analysis confirmed the interaction between miR210HG and miR-874. Results: Here, our data showed that miR210HG was overexpressed in NSCLC tissue samples and cells. In vitro functional assays showed that silencing miR210HG blocked NSCLC cell proliferation, migration, and invasion while promoting NSCLC cell radiosensitivity and chemoresistance. Mechanistically, miR-874 was directly regulated by miR210HG. Furthermore, miR-874 expression was reduced in NSCLC tissues and cells. The miR-874 mimic could mitigate the promoting effect of miR210HG on NSCLC cell progression. The data also showed that miR210HG promoted NSCLC cell progression through miR-181a expression by targeting STAT3. Conclusions: Our observations suggest that miR210HG is associated with NSCLC cell progression by regulating the miR-874/STAT3 axis.

Funder

Breathing clinical center

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3