Green Platinum Nanoparticles Interaction With HEK293 Cells: Cellular Toxicity, Apoptosis, and Genetic Damage

Author:

Almeer Rafa S.1,Ali Daoud1,Alarifi Saud1,Alkahtani Saad1ORCID,Almansour Mansour1

Affiliation:

1. Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

Abstract

Metal nanoparticles are widely used in industry, agriculture, textiles, drugs, and so on. The adverse effect of green platinum nanoparticles on human embryonic kidney (HEK293) cells is not well established. In the current study, green platinum nanoparticles were synthesized using leaf extract of Azadirachta indica L. Green platinum nanoparticles were characterized by dynamic light scattering and transmission electron microscope. The cytotoxicity of green platinum nanoparticle was observed in HEK293 cells by applying 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and Neutral red uptake (NRU) assays. Cell viability of the cells was decreased in a concentration and duration-dependent manner. Generation of reactive oxygen species (ROS) in HEK293 cells due to green platinum nanoparticles was examined using fluorescent dye 2,7-dichlorofluorescein diacetate (DCFDA), and ROS was increased according to exposure pattern. The cytotoxicity of HEK293 cells was correlated with increased caspase 3, depolarization of mitochondrial membrane potential, and DNA fragmentation. The abovementioned finding confirmed that mitochondria play an important role in genotoxicity and cytotoxicity induced by nanoparticles in HEK293 cells. Further, we determined other oxidative stress biomarkers, lipid peroxide (LPO) and glutathione (GSH); LPO was increased and GSH was decreased in HEK293 cells. It is also important to indicate that HEK293 cells appear to be more susceptible to green platinum nanoparticles exposure after 24 hours. This result provides a dose- and time-dependent apoptosis and genotoxicity of green nanoparticles on HEK293 cells.

Funder

Deanship of Scientific Research at King Saud University.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3