Regulation of oncogenes and gap junction intercellular communication during the proliferative response of zearalenone in TM3 cells

Author:

Zheng W12,Huang Q12,Pan S1,Fan W1,Wang G1,Yuan Y12,Gu J12,Liu X12,Liu Z12,Bian J12

Affiliation:

1. College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China

2. Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China

Abstract

Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced by Fusarium species. The exposure risk to humans and animals is the consumption of contaminated food and animal feeds. The aim of this study was to investigate ZEA-induced effects and its tumorigenic mechanism in TM3 cells (mouse Leydig cells). Cell proliferation, apoptosis, and gap junction intercellular communication (GJIC) were assessed in this study. Results showed that low concentrations of ZEA could significantly promote the growth of TM3 cells. The percentage of cell distribution was decreased significantly in G1/G0 phase and was increased significantly in S phase with 10 and 20 μg/L of ZEA for 72 h ( p < 0.05, p < 0.01). The expressions of cyclin D1 and Cdk4 were significantly increased in the exposure groups compared with the control group ( p < 0.05, p < 0.01). Compared with the control group, the apoptosis was significantly decreased in 10 and 20 μg/L groups ( p < 0.01), and the ratio of Bax/Bcl-2 protein level was significantly decreased in a dose-dependent manner. The protein levels of proto-oncogene c-Myc, c-Jun, and c-Fos were significantly elevated and the protein levels of anti-oncogene p53 and phosphatase and tensin homolog (PTEN) were decreased obviously compared with the control group ( p < 0.05, p < 0.01). ZEA affected the expressions of connexins and inhibited the activity of GJIC. These results demonstrated that ZEA can disturb the dynamic balance between proliferation and apoptosis and causes abnormal regulation of oncogenes, GJIC, and connexins in TM3 cells, which may easily induce the translation of normal cells into tumor cells.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3