Influence of hypothyroidism on testicular mitochondrial oxidative stress by activating the p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase signaling pathways in rats

Author:

Chang X-R1,Yao Y-L1,Wang D1,Ma H-T1,Gou P-H2,Li C-Y1,Wang J-L1ORCID

Affiliation:

1. Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China

2. INSERM UMR-S 1131, Institut Universitaire d’Hématologie, Université Paris Diderot, Paris, France

Abstract

Thyroid hormone deficiency can impair testicular function. However, knowledge of the effects of mitogen-activated protein kinase (MAPK) pathways on testicular mitochondrial oxidative damage induced by hypothyroidism is still rudimentary. This study aims to explore the possible mechanisms of testicular mitochondrial oxidative damage in hypothyroidism rats. Wistar male rats were randomly divided into control (C), low- (L), and high-hypothyroidism (H) groups (1 ml/100 g body weights (BWs)/day 0, 0.001% and 0.1% propylthiouracil, respectively) by intragastric gavage for 60 days. Blood samples were collected to measure the levels of serum triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH). Testicular mitochondrial homogenates were used to measure the activities of superoxide dismutase (SOD), catalase (CAT), and Ca2+-ATPase as well as protein and mRNA expression of androgen receptor (AR), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Results showed that the BWs, testes weights, and levels of T3 and T4 were all significantly decreased and the testes coefficient and level of TSH were significantly increased in the H group. There were significant decreases in SOD activity in the H group as well as decreases in CAT and Ca2+-ATPase activities in the L and H groups. Additionally, protein expression of AR decreased significantly and protein expression of phosphorylated p38MAPK and JNK increased significantly in the H group. Therefore, the study suggests that hypothyroidism could affect male reproductive function by disturbing expression of AR, changing the activity of Ca2+-ATPase, inducing oxidative stress and then leading to activation of p38MAPK and JNK signaling in the testicular mitochondria.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3