Neurotoxicity of mycotoxins produced in vitro by Penicillium roqueforti isolated from maize and grass silage

Author:

Malekinejad H123,Aghazadeh-Attari J4,Rezabakhsh A5,Sattari M1,Ghasemsoltani-Momtaz B1

Affiliation:

1. Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University, Urmia, Islamic Republic of Iran

2. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Islamic Republic of Iran

3. Department of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

4. Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Islamic Republic of Iran

5. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran

Abstract

Fungal growth in human foods and animal feeds causes profound damage indicating a general spoilage, nutritional losses, and the formation of mycotoxins. Thirty apparently contaminated maize and grass silage samples were analyzed for the presence of total fungi. Penicillium roqueforti were isolated from all (100%) moldy silage samples on general and selective culture media. Furthermore, P. roqueforti-positive samples culture media subjected to the toxin extraction and toxins of patulin, penicillic acid, mycophenolic acid, and roquefortin-C (ROQ-C) were identified by means of high-performance liquid chromatography method. Cytotoxicity of identified toxins was investigated on neuro-2a cells. Alamar blue reduction, neutral red uptake, and intracellular adenosine triphosphate (ATP) content assays indicated that patulin and ROQ-C exert the strongest and weakest toxicity, respectively. Reactive oxygen species (ROS) generation by the toxins-exposed cells was measured, and the results supported the mitochondrial and lysosomal dysfunction and ATP depletion in exposed cells. Our data suggest that P. roqueforti is the widely present mold in analyzed maize and grass silage samples, which is able to produce toxins that cause neurotoxicity. This finding may explain in part some neuronal disorders in animals, which are fed contaminated feedstuffs with mentioned fungus. Moreover, mitochondrial and lysosomal dysfunction, intracellular ATP depletion, and the excessive ROS generation were found as the mechanisms of cytotoxicity for P. roqueforti-produced toxins.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3