Evaluation of the toxicity of zinc in the rat olfactory neuronal cell line, Odora

Author:

Hsieh H1,Amlal H2,Genter MB1

Affiliation:

1. Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA

2. Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA

Abstract

Zinc (Zn) has long been touted as a panacea for common cold. Recently, there has been some controversy over whether an intranasal (IN) zinc gluconate gel, purported to fight colds, causes anosmia, or loss of the sense of smell, in humans. Previous evidence has shown that IN zinc sulfate (ZnSO4) solutions can cause anosmia in humans as well as significant damage to the olfactory epithelium in rodents. Using an in vitro olfactory neuron model (the rat Odora cell line), we tested the hypothesis that Zn toxicity was caused by inhibition of the hydrogen voltage-gated channel 1(HVCN1), leading to acidosis and apoptotic cell death. Following studies to characterize the toxicity of zinc gluconate and ZnSO4, Odora cells were grown on coverslips and loaded with 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester to measure intracellular pH in the presence and absence of Zn salts. While we found that HVCN1 is not functional in Odora cells, we found that olfactory neurons in vitro maintain their intracellular pH through a sodium/proton exchanger, specifically the sodium proton antiporter 1. ZnSO4, at nontoxic levels, had no impact on intracellular pH after acute exposure or after 24 h of incubation with the cells. In conclusion, Zn toxicity is not mediated through an acidification of intracellular pH in olfactory neurons in vitro.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3