Nephrotoxicity of 4-Aminophenol Glutathione Conjugate

Author:

Fowler Lynn M.1,Moore Richard B.1,Foster John R.1,Lock Edward A.1

Affiliation:

1. Imperial Chemical Industries PLC, Central Toxicology Laboratory, Alderley Park, Nr. Macclesfield, Cheshire SK10 4TJ, UK

Abstract

4-Aminophenol ( p-aminophenol, PAP) causes selective necrosis to the pars recta of the proximal tubule in Fischer 344 rats. The basis for this selective toxicity is not known, but PAP can undergo oxidation in a variety of systems to form the 4-aminophenoxy free radical. Oxidation or disproportionation of this radical will form 1,4-benzoquinoneimine which can covalently bind to tissue macromolecules. Recent studies have shown that certain benzoquinol-glutathione conjugates can cause renal necrosis in rats. We have synthesized a putative glutathione conjugate of PAP. The effect on the kidney of this conjugate and the sulphate and N-acetyl conjugates, known metabolites of PAP, have been examined in Fischer 344 rats. 4-Amino-3-S-glutathionylphenol produced a dose-dependent (92-920 μmol kg-1) necrosis of the proximal tubular epithelium and altered renal excretory function. The lesion at the low dose was restricted to the pars recta of the proximal tubule in the medullary rays, while at the higher doses it affected the pars recta region of all nephrons. In contrast, PAP-o-sulphate and N-acetyl-4-aminophenol (paracetamol) caused no histological or functional alteration to the kidney at 920 μmol kg-1. The renal necrosis produced by 4-amino-3-S-glutathionylphenol was very similar to that produced by PAP (367-920 μmol kg-1), both functionally and histologically, except that smaller doses of the glutathione conjugate were required. These studies indicate that glutathione conjugation of PAP generates a metabolite that is more toxic to the kidney than the parent compound. A possible mechanism of toxicity (analogous to that reported for glutathione conjugates of certain quinones) involving oxidation to form a 1,4-benzoquinoneimine thioether that could redox cycle is discussed.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3