Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers

Author:

Zhang Junming1,Wu Yan1,Bai Jing1,Chen Fuqiang1

Affiliation:

1. College of Electronics & Information Engineering, Tongji University, Shanghai 201804, China

Abstract

This paper presents an automatic sleep stage method combining a sparse deep belief net and combination of multiple classifiers for electroencephalogram, electrooculogram and electromyogram. The sparse deep belief net was applied to extract features from these signals automatically, and the combination of multiple classifiers, utilizing the extracted features, assigned each 30-s epoch to one of the five possible sleep stages. More importantly, we proposed a new voting principle based on classification entropy to enhance the classification performance further by harnessing the complementary information provided by the individual classifier. Differently from existing methods, our method used unsupervised feature learning to extract features automatically from raw sleep data and classification based on the learned features. The results of automatic and manual scorings were compared on an epoch-by-epoch basis. The accuracies for wake, S1, S2, SWS and REM were 98.49%, 80.05%, 91.2%, 98.22% and 95.31%, respectively, and the total accuracy of sleep stage was 91.31%. The results demonstrated that the sparse deep belief net was an efficient feature extraction method for sleep data, and the combination of multiple classifiers based on classification entropy performed well on sleep stages.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrode subset selection to lessen the complexity of brain activity measurement using EEG for depression detection;Transactions of the Institute of Measurement and Control;2024-07-26

2. Reliable automatic sleep stage classification based on hybrid intelligence;Computers in Biology and Medicine;2024-05

3. Recognition of Sleep-Wake Stages by Deep Takagi-Sugeno-Kang Fuzzy Classifier with Random Rule Heritage;IEEE Transactions on Emerging Topics in Computational Intelligence;2023-10

4. Machine Learning-based Feature Extraction Method for Sleep Stage Classification;2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2023-06-14

5. Automatic Sleep Staging Using BiRNN with Data Augmentation and Label Redirection;Electronics;2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3