Active damping control strategy for a parallel hybrid electric vehicle based on model predictive control

Author:

Song DF1ORCID,Yang DP1,Zeng XH12,Wang ZW2

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, China

2. Chongqing Research Institute, Jilin University, China

Abstract

Since the coupling relationship of excitation sources is complicated, meantime the motor torque changes quickly under the acceleration condition, the problem of torsional vibration is prominent. This paper studies an active damping control (ADC) strategy for a parallel hybrid electric vehicle (HEV) under acceleration condition. Primarily, a full-order dynamic model is built, and the corresponding motion equations are derived. Moreover, a controller design–oriented model is established based on model reduction algorithm. Furthermore, a method that considers time delay characteristics of actuator based on model predictive control (MPC) theory is proposed to solve the torsional vibration problem. The controller handles delay characteristics of an actuator by state-space reorganization method, and the optimal control sequence is obtained by solving the objective function. Finally, the controller is tested using Simulink simulation and hardware-in-loop simulation platform, which mainly includes the verification of model reduction and vibration damping effect. The results show that simplified third-order model has a good consistency with the original full-order model in time and frequency domain. Meanwhile, the designed controller has a considerable damping effect and ensures the comfort performance of the vehicle. This study provides an important reference for vibration control of the hybrid powertrain.

Funder

Graduate Innovation Fund of Jilin University

natural science foundation of chongqing

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3