Power quality improvement of wind energy conversion system with unified power quality controller: A hybrid control model

Author:

Nagaraju Gowtham1ORCID,Shankar Shobha2

Affiliation:

1. Electrical and Electronics Engineering, Vidyavardhaka College of Engineering, India

2. Department of Electrical and Electronics Engineering, Vidyavardhaka College of Engineering, India

Abstract

The real problems in diminution of power quality (PQ) occur due to the rapid growth of nonlinear load are leading to a sudden decrease of source voltage for a few seconds. All these problems can be compensated by unified power quality controller (UPQC). The proposed research is based on designing a wind energy conversion system (WECS) fed to the dc-link capacitor of UPQC so as to maintain proper voltage across it and operate the UPQC for PQ improvement. The proposed research utilizes two techniques for enhancing the performance of UPQC known as integrated ant lion optimizer (IALO)-adaptive neuro fuzzy inference system (ANFIS), called IALO-ANFIS. Here, induction motor is considered as non-linear load. ALO searching behavior is enhanced by crossover and mutation. Initially, the objective function parameters are defined, that is, voltage, real, grid parameters, load parameters, real and reactive power and current. Based on these parameters, the control pulse is produced for series and shunt active power filter (APF). IALO is used to identify the optimal solutions and creates the training dataset. In light of the accomplished dataset, ANFIS predicts the best control signals of UPQC. During load variation conditions, the proposed strategy minimized the power loss and voltage instability issue individually. Subsequently, the power quality of the system is enhanced. In order to evaluate the effectiveness of the proposed method, three different cases are considered. The performance of the proposed technique is validated through MATLAB/Simulink and compared with existing techniques such as genetic algorithm and ALO.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3