Robust stability and stabilization of networked control systems with stochastic time-varying network-induced delays

Author:

Rouamel Mohamed1,Gherbi Sofiane2ORCID,Bourahala Fayçal1

Affiliation:

1. Department of Electrical Engineering, LAS Laboratory, 20 Août 1955 University, Skikda, Algeria

2. Department of Electronics, LASA Laboratory, Badji Mokhtar University, Annaba, Algeria

Abstract

This paper investigates the robust stability analysis and state feedback controller design of networked control systems (NCSs). A stochastic network-induced delay in given interval with known lower and upper bounds is considered. Therefore, the NCS is modeled as linear system with probabilistic time-varying delay distribution. Then, the Lyapunov-Krasovskii functional (LKF) is formulated using probabilistic informations of both lower and upper bounds of the time-varying network-induced delay, and Wirtinger-based integral inequalities are used to estimate the accuracy of the resulting time derivatives and also to reduce conservatism by introducing some new cross terms. Afterwards, stability condition based on [Formula: see text] disturbance attenuation level is expressed in terms of a set of linear matrix inequalities (LMIs), and Finsler’s lemma is used to relax it by adding slack decision variables and decoupling the systems matrices from those of Lyapunov-Krasovskii. This procedure makes the state feedback controller design as simple as a variables change. Finally, a maximum allowable upper bound of the network-induced delay and state feedback controller gains are calculated by resolving the above relaxed LMIs’ convex optimization problem. Practical numerical examples are provided to validate the proposed approach; the results show that the negative effects of the unpredictable network-induced delays are compensated and the stability of NCSs with high disturbance attenuation level is guaranteed. A comparative study with other results in recent researches is also given and the superiority of the proposed method in terms of robustness and conservatism reduction is shown.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3