Harmony search optimization for robust pole assignment in union regions for synthesizing feedback control systems

Author:

Zhai Junchang12,Gao Liqun2,Li Steven3

Affiliation:

1. College of Information Science and Technology, Bohai University, PR China

2. College of Information Science and Engineering, Northeastern University, PR China

3. Graduate School of Business and Law, RMIT University, Australia

Abstract

This paper is concerned with robust pole assignment optimization for synthesizing feedback control systems via state feedback or observer-based output feedback in specified union regions using the harmony search algorithm. By using exact pole placement theory and the harmony search algorithm, robust pole assignment for linear discrete-time systems or linear continuous-time systems in union regions can be converted into a global dynamical optimization problem. The robust measured indices are derived for robust union region stability constraints and a robust [Formula: see text] performance. For the nonlinear, robust measured indices, a set of dynamic poles and the corresponding feedback controllers can be obtained by global dynamic optimization based on the harmony search algorithm and the idea of robust exact pole assignment. One key merit of the proposed approach is that the radius or the position of the sub-regions can be arbitrarily specified according to the transient performance request. Furthermore, the eigenstructure of the closed-loop system matrix can be optimized with better robustness for the proposed approach. Finally, the simulation results for a discrete-time system and a continuous-time system demonstrate the effectiveness and superiority of the proposed method.

Funder

Funds of National Science of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Pole Assignment via State Feedback for Uncertain High-order System;2022 4th International Conference on Control and Robotics (ICCR);2022-12-02

2. A modelling and predictive control approach to linear two-stage inverted pendulum based on RBF-ARX model;International Journal of Control;2019-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3