Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery

Author:

Han Te1,Jiang Dongxiang1,Zhao Qi2,Wang Lei2,Yin Kai2

Affiliation:

1. State Key Lab of Control and Simulation of Power System and Generation Equipment, Department of Thermal Engineering, Tsinghua University, China

2. AECC Commercial Aircraft Engine Co., Ltd, Shanghai, China

Abstract

Nowadays, the data-driven diagnosis method, exploiting pattern recognition method to diagnose the fault patterns automatically, achieves much success for rotating machinery. Some popular classification algorithms such as artificial neural networks and support vector machine have been extensively studied and tested with many application cases, while the random forest, one of the present state-of-the-art classifiers based on ensemble learning strategy, is relatively unknown in this field. In this paper, the behavior of random forest for the intelligent diagnosis of rotating machinery is investigated with various features on two datasets. A framework for the comparison of different methods, that is, random forest, extreme learning machine, probabilistic neural network and support vector machine, is presented to find the most efficient one. Random forest has been proven to outperform the comparative classifiers in terms of recognition accuracy, stability and robustness to features, especially with a small training set. Additionally, compared with traditional methods, random forest is not easily influenced by environmental noise. Furthermore, the user-friendly parameters in random forest offer great convenience for practical engineering. These results suggest that random forest is a promising pattern recognition method for the intelligent diagnosis of rotating machinery.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 257 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3