Affiliation:
1. Department of Electrical Engineering, NIT Meghalaya, India
2. Department of Electrical Engineering, Assam Engineering College, India
Abstract
This paper presents the collective operation and comparative assessment of artificial neural network (ANN)-based adaptive controller with detuned-inductor capacitor (LC) filter facility in grid-tied voltage source control (VSC) system. In order to facilitate proper shaping of VSC outputs and to avoid voltage surge or current surge issues that may occur during the synchronization, the controlling action should reflect importance of total impedance (Zt) effect for: (i) accurate online weight updating, (ii) generation of correct references for proper shaping of VSC outputs, (iii) accurate assessment and exclusion of current harmonics and (iv) robust in defending any system perturbation. This impedance is taken into consideration during the run-time weight updation process through extended control steps in order to pass over various losses that certainly occurs in transformers, filters, line parameters and so forth. Performance of the system is well improved with an inclusion of total impedance (Zt) measured between the VSC and point of common coupling (PCC). A detuned-LC filter is predominantly intended for reactive power compensation, power factor correction, prompt and accurate alleviation of the harmonics. A comparative assessment in between enhanced and conventional adaptive controllers that are designed in MATLAB/Simulink clarifies the robust performances of the proposed control design under sundry system turbulences. The verification of the proposed enhanced controller is approved with the hardware results obtained using dSPACE RTI 1202 kit.