Fractional order frequency proportional-integral-derivative control of microgrid consisting of renewable energy sources based on multi-objective grasshopper optimization algorithm

Author:

Tabak Abdulsamed1ORCID

Affiliation:

1. Department of Mechatronics Engineering, Engineering Faculty, Necmettin Erbakan University, Turkey

Abstract

In recent years, fractional order proportional-integral-derivative (FOPID) controllers have been applied in different areas in the academy due to their superior performance over conventional proportional-integral-derivative (PID) controllers. When the literature is reviewed, it has been observed that lack of studies that use swarm-based and multi-objective optimization algorithms together with FOPID controllers in frequency control of micro-grid. The load frequency control (LFC) problem is considered as two objectives in order to eliminate the complications that occur when only the frequency deviation is minimized. In our study, a method called MOGOA-FOPID in which both the frequency deviation and the control signal are minimized together for the frequency control in the microgrid is proposed. By using the multi-objective grasshopper optimization algorithm (MOGOA), both the frequency deviation and the control signal are minimized together, and thus, it is aimed to limit the battery capacity, reduce the flywheel jerk and avoid high diesel fuel consumption as well as an effective frequency control. In order to obtain a more realistic system, not only the photovoltaic (PV) solar and wind power but also the load demand is taken in a stochastic structure. Then, the results of the proposed MOGOA-FOPID are compared with the results of multi-objective genetic algorithm (MOGA)-based PID/FOPID and MOGOA-PID and its superiority is demonstrated. Finally, robustness tests of the system are performed under the perturbed parameters and outperform of MOGOA-FOPID over other methods is seen.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3