On an enhanced back propagation neural network control of vehicle semi-active suspension with a magnetorheological damper

Author:

Wang Mingxiang1ORCID,Pang Hui1ORCID,Luo Jibo1,Liu Minhao1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, China

Abstract

To improve the ride quality of a vehicle, an enhanced vibration control method is presented for semi-active suspension (SAS) with magnetorheological (MR) damper by combining back propagation neural network (BPNN) and particle swarm optimization (PSO). Based on the test data of MR damper, a non-parametric model of MR damper using adaptive neuro-fuzzy inference system (ANFIS) is first established, and based on that, a dynamics model of the SAS system is derived. Next, a BPNN controller is designed to fulfill the effective control of the current in MR damper. Meanwhile, the improved PSO with adaptive weight and dynamic acceleration constant is introduced to optimize the weights and thresholds of the BPNN controller, which can avoid the designed BPNN falling into the local optimum and then improve the convergence rate of the designed controller. Besides, the stability of the developed controller is analyzed via Lyapunov stability theory. Different from the existing models and methods, the established model can well describe the dynamics behaviors of the actual MR damper, and the proposed control method has better adaptability, convergence speed and precision. Finally, a simulative investigation is performed to validate the effectiveness and feasibility of the proposed controller, compared to existing BP-PID control and the passive suspension, the vehicle acceleration of SAS with this proposed controller is respectively improved by 10% and 30%.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3