Affiliation:
1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, China
Abstract
To improve the ride quality of a vehicle, an enhanced vibration control method is presented for semi-active suspension (SAS) with magnetorheological (MR) damper by combining back propagation neural network (BPNN) and particle swarm optimization (PSO). Based on the test data of MR damper, a non-parametric model of MR damper using adaptive neuro-fuzzy inference system (ANFIS) is first established, and based on that, a dynamics model of the SAS system is derived. Next, a BPNN controller is designed to fulfill the effective control of the current in MR damper. Meanwhile, the improved PSO with adaptive weight and dynamic acceleration constant is introduced to optimize the weights and thresholds of the BPNN controller, which can avoid the designed BPNN falling into the local optimum and then improve the convergence rate of the designed controller. Besides, the stability of the developed controller is analyzed via Lyapunov stability theory. Different from the existing models and methods, the established model can well describe the dynamics behaviors of the actual MR damper, and the proposed control method has better adaptability, convergence speed and precision. Finally, a simulative investigation is performed to validate the effectiveness and feasibility of the proposed controller, compared to existing BP-PID control and the passive suspension, the vehicle acceleration of SAS with this proposed controller is respectively improved by 10% and 30%.
Funder
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献