Nonlinear disturbance observer–based adaptive neural control for electro-hydraulic servo system with model uncertainty and full-state constraints

Author:

Wan Zhenshuai1ORCID,Liu Chong1,Fu Yu1

Affiliation:

1. School of Mechanical and Electrical Engineering, Henan University of Technology, China

Abstract

The electro-hydraulic servo system (EHSS) performs model uncertainty and state constraints such that the exact model-based controller is difficult to be designed. In this work, a nonlinear disturbance observer (NDO)-based adaptive neural control (ANC) is proposed for the EHSS, in which a nonlinear transformation function is constructed to make the state constraints problem transformed into state unconstraint problem. The NDO is introduced to improve the disturbance rejection ability. The ANC is utilized to approximate unmodeled dynamics. The second-order filters are integrated with backstepping control to solve the explosion of complexity. The proposed NDO-based ANC scheme confines all states within the predefined bounds, improves the robustness of closed-loop system, and alleviates the computation burden. Moreover, the stability analysis for the closed-loop system is given within the Lyapunov framework. Simulations and experiments show that the proposed control scheme can achieve excellent control performance and robustness with regard to full-state constraints and model uncertainty.

Funder

the High Level Talent Foundation of Henan University of Technology

the Science and Technology Key Project Foundation of Henan Provincial Edu-cation Department

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3