Affiliation:
1. Dept. of Cardiovascular Surgery, Lausanne, Switzerland,
2. CFDRC research corporation, Huntsville, USA
3. Dept. of Cardiovascular Surgery, Lausanne, Switzerland
Abstract
Peripheral access cardiopulmonary bypass (CPB) is initiated with percutaneous cannulae (CTRL) and venous drainage is often impeded due to smaller vessel and cannula size. A new cannula (Smartcanula ®, SC) was developed which can change shape in situ and, therefore, may improve venous drainage. Its performance was evaluated using a 2-D computational fluid dynamics (CFD) model. The Navier-Stokes equations could be simplified due to the fact that we use a steady state and a 2-dimensional system while the equation of continuity (ρ constant) was also simplified. We compared the results of the SC to the CTRL using CFDRC® (Version 6.6, CFDRC research corporation, Huntsville, USA) at two preloads (300 and 700 Pa). The SC's mass flow rate outperformed the CTRL by 12.1% and 12.2% at a pressures of 300 and 700 Pa, respectively. At 700 Pa, a pressure gradient of 50% was measured for the CTRL and 11% for the SC. The mean velocity at the 700 Pa for the CTRL was 1.0 m.s-1 at exit while the SC showed an exit velocity of 1.3 m.s-1. Shear rates inside the cannulae were similar between the two cannulae. In conclusion, the prototype shows greater mass flow rates compared to the classic cannula; thus, it is more efficient. This is also advocated by a better pressure gradient and higher average velocities. By reducing cannula-tip surface area or increasing hole surface area, greater flow rates are achieved. Perfusion (2007) 22, 257—265.
Subject
Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology, Nuclear Medicine and imaging,General Medicine
Reference28 articles.
1. The Smart CanulaTM: A New Tool for Remote Access Perfusion in Limited Access Cardiac Surgery
2. Flow Dynamic Comparison of Peripheral Venous Cannulas Used with Centrifugal Pump Assistance In Vitro
3. Modelling nanoscale fluid dynamics and transport in physiological flows
4. Boschetti F. Computer simulation of heart-lung bypass. In: Power H & Hart RT, ed. Computer simulations in biomedicine, Computational mechanics publications Springer Berlin 1995: 565—72.
5. de Wachter D. Extracorporeal systems. In: Verdonck P, ed. Intra and extracorporeal cardiovascular fluid dynamics: vol 1, WIT press , Southampton 1998: 101—51.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献