Effect of inflow cannula side-hole number on drainage flow characteristics: flow dynamic analysis using numerical simulation

Author:

Goto Takeshi1,Tanabe Tsubasa2,Inamura Takao2,Shirota Minori2,Fumoto Koji3,Saito Yoshiaki1,Fukuda Wakako1,Fukuda Ikuo1,Daitoku Kazuyuki1,Minakawa Masahito1

Affiliation:

1. Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan

2. Department of Intelligent Machines and System Engineering, Faculty of Science and Technology, Hirosaki University, Hirosaki, Japan

3. Department of Mechanical Engineering, College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan

Abstract

Background: Venous drainage in cardiopulmonary bypass is a very important factor for safe cardiac surgery. However, the ideal shape of venous drainage cannula has not been determined. In the present study, we evaluated the effect of side-hole number under fixed total area and venous drainage flow to elucidate the effect of increasing the side-hole numbers. Method: Computed simulation of venous drainage was performed. Cannulas were divided into six models: an end-hole model (EH) and models containing four (4SH), six (6SH), eight (8SH), 10 (10SH) or 12 side-holes (12SH). Total orifice area of the side-holes was fixed to 120 mm2 on each side-hole cannula. The end-hole orifice area was 36.3 mm2. The total area of the side-holes was kept constant when the number of side-holes was increased. Result: The mean venous drainage flow rate of the EH, 4SH, 6SH, 8SH, 10SH and 12SH was 2.57, 2.52, 2.51, 2.50, 2.49, 2.41 L/min, respectively. The mean flow rate decreased in accordance with the increased number of side-holes. Conclusion: We speculate that flow separation at the most proximal site of the side-hole induces stagnation of flow and induces energy loss. This flow separation may hamper the main stream from the end-hole inlet, which is most effective with low shear stress. The EH cannula was associated with the best flow rate and flow profile. However, by increasing side-hole numbers, flow separation occurs on each side-hole, resulting in more energy loss than the EH cannula and flow rate reduction.

Publisher

SAGE Publications

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3